174 research outputs found

    Retrieving Supporting Evidence for Generative Question Answering

    Full text link
    Current large language models (LLMs) can exhibit near-human levels of performance on many natural language-based tasks, including open-domain question answering. Unfortunately, at this time, they also convincingly hallucinate incorrect answers, so that responses to questions must be verified against external sources before they can be accepted at face value. In this paper, we report two simple experiments to automatically validate generated answers against a corpus. We base our experiments on questions and passages from the MS MARCO (V1) test collection, and a retrieval pipeline consisting of sparse retrieval, dense retrieval and neural rerankers. In the first experiment, we validate the generated answer in its entirety. After presenting a question to an LLM and receiving a generated answer, we query the corpus with the combination of the question + generated answer. We then present the LLM with the combination of the question + generated answer + retrieved answer, prompting it to indicate if the generated answer can be supported by the retrieved answer. In the second experiment, we consider the generated answer at a more granular level, prompting the LLM to extract a list of factual statements from the answer and verifying each statement separately. We query the corpus with each factual statement and then present the LLM with the statement and the corresponding retrieved evidence. The LLM is prompted to indicate if the statement can be supported and make necessary edits using the retrieved material. With an accuracy of over 80%, we find that an LLM is capable of verifying its generated answer when a corpus of supporting material is provided. However, manual assessment of a random sample of questions reveals that incorrect generated answers are missed by this verification process. While this verification process can reduce hallucinations, it can not entirely eliminate them.Comment: arXiv admin note: text overlap with arXiv:2306.1378

    Immunity against Influenza Type A among 4-14-Years-Old Children in Kerman, Iran

    Get PDF
    Abstract: Background & Aims: Influenza viruses are important causes of mortality and morbidity in children. The aim of this study was to assess the presence of antibodies (IgG) against Influenza A in children in Kerman, Iran. Methods: In a cross-sectional study, 200 children aged 4-14 years referred to Besaat Clinic and Afzalipour hospital for diseases other than influenza were enrolled. Sera were tested for anti influenza A IgG with NovaLisa ELISA kits (NOVATEC, Germany). Results: Anti-Influenza virus A IgG was detected in 12% (24/200) of the sera. This group had the highest mean age [9.62 (7-12) years]. Among studied variables, only age was related to seropositivness for anti-Influenza A serotypes. Conclusion: The majority of children aged 4-14 years in Kerman had no immunity to Influenza A. So, they are at risk for influenza and its morbidity during possible epidemics of this infection. Keywords: Influenza A, Immunity, Childre

    Investigating the Heat Generation Efficiency of Electrically-Conductive Asphalt Mastic Using Infrared Thermal Imaging

    Get PDF
    One of the emerging technologies for producing sustainable ice-and snow-free pavements is the use of electrically-conductive surface courses, e.g., electrically-conductive asphalt concrete (ECAC) that can melt ice and snow through resistive heating. Modifying the mastic in asphalt concrete with electrically-conductive materials is a promising approach for producing high-quality ECAC. The objective of this study is to evaluate electrical conductivity and heat generation efficiency of electrically-conductive asphalt mastic (ECAM) specimens at a below-freezing temperature—simulating the harsh weather conditions in North America during the wintertime. To this end, asphalt mastic was electrically modified with carbon fiber (CF) at varying volume contents. The ECAM specimens were then powered by 60V AC during a time window of 10 minutes so that their heat generation capacity could be characterized through infrared thermography (IRT). Based on the resistivity measurements and thermal data analysis, the most reasonable CF content enabling rapid heat-generating ECAM was identified; this has future implications with respect to achieving efficient highway, bridge, and airport pavement operations during wintertime

    Influence of Deicing Salts on the Water-Repellency of Portland Cement Concrete Coated with Polytetrafluoroethylene and Polyetheretherketone

    Get PDF
    Sustainable super water/ice-repellent pavements are gaining attention as a smart solution for mitigating problems associated with winter pavement maintenance of roadways and airfields. Such smart pavements can facilitate surface drainage and prevent or curb ice formation or snow accumulation. While a conventional method for melting ice and snow is the use of deicing chemicals, such materials can transfer to the surface of nanotechnology-based pavements and influence their water/icerepellency by changing the chemistry of water or ice. This study focused on characterizing the degree of hydrophobicity of Portland cement concrete (PCC) nanocoated with polytetrafluoroethylene/polyetheretherketone (PTFE/PEEK). A layer-bylayer (LBL) spray deposition technique was used for spraying the binding agent and water-repellent materials. The liquid-repellency was characterized by measuring the static liquid contact angles (LCAs) and calculating the works of adhesion (WA). The liquid types used included distilled water and two types of deicing chemicals prepared by dissolving salts in distilled water. Data analysis results revealed that salt contamination improves the water-repellency of nano-coated surfaces

    Improving visual sensitivity with subthreshold transcranial magnetic stimulation

    Get PDF
    We probed for improvement of visual sensitivity in human participants using transcranial magnetic stimulation (TMS). Stimulation of visual cortex can induce an illusory visual percept known as a phosphene. It is known that TMS, delivered at intensities above the threshold to induce phosphenes, impairs the detection of visual stimuli. We investigated how the detection of a simple visual stimulus is affected by TMS applied to visual cortex at or below the phosphene threshold. Participants performed the detection task while the contrast of the visual stimulus was varied from trial to trial according to an adaptive staircase procedure. Detection of the stimulus was enhanced when a single pulse of TMS was delivered to the contralateral visual cortex 100 or 120 ms after stimulus onset at intensities just below the phosphene threshold. No improvement in visual sensitivity was observed when TMS was applied to the visual cortex in the opposite hemisphere (ipsilateral to the visual stimulus). We conclude that TMS-induced neuronal activity can sum with stimulus-evoked activity to augment visual perception

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    Dermatitis and Aging-Related Barrier Dysfunction in Transgenic Mice Overexpressing an Epidermal-Targeted Claudin 6 Tail Deletion Mutant

    Get PDF
    The barrier function of the skin protects the mammalian body against infection, dehydration, UV irradiation and temperature fluctuation. Barrier function is reduced with the skin's intrinsic aging process, however the molecular mechanisms involved are unknown. We previously demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are essential in the development of the epidermis and that transgenic mice overexpressing Cldn6 in the suprabasal layers of the epidermis undergo a perturbed terminal differentiation program characterized in part by reduced barrier function. To dissect further the mechanisms by which Cldn6 acts during epithelial differentiation, we overexpressed a Cldn6 cytoplasmic tail deletion mutant in the suprabasal compartment of the transgenic mouse epidermis. Although there were no gross phenotypic abnormalities at birth, subtle epidermal anomalies were present that disappeared by one month of age, indicative of a robust injury response. However, with aging, epidermal changes with eventual chronic dermatitis appeared with a concomitant barrier dysfunction manifested in increased trans-epidermal water loss. Immunohistochemical analysis revealed aberrant suprabasal Cldn localization with marked down-regulation of Cldn1. Both the proliferative and terminal differentiation compartments were perturbed as evidenced by mislocalization of multiple epidermal markers. These results suggest that the normally robust injury response mechanism of the epidermis is lost in the aging Involucrin-Cldn6-CΔ196 transgenic epidermis, and provide a model for evaluation of aging-related skin changes

    On the presence of high-order interactions among somatosensory neurons and their effect on information transmission

    Get PDF
    In order to understand how populations of neurons encode information about external correlates, it is important to develop minimal models of the probability of neural population responses which capture all the salient changes of neural responses with stimuli. In this context, it is particularly useful to determine whether interactions among neurons responding to stimuli can be described by a pairwise interaction model, or whether a higher order interaction model is needed. To address this question, we compared real neural population activity obtained from the rat somatosensory cortex to maximum-entropy models which take into account only interaction of up any given order. By performing these comparisons, we found that interactions of order two were sufficient to explain a large amount of observed stimulus-response distributions, but not all of them. Triple-wise interactions were necessary to fully explain the data. We then used Shannon information to compute the impact of high order correlations on the amount of somatosensory information transmitted by the neural population. We found that correlations of order two gave a good approximation of information carried by the neural population, within 4% of the true value. Third order correlations gave an even better approximation, within 2% of the true value. Taken together, these results suggest that higher order interactions exist and shape the dynamics of cortical networks, but play a quantitatively minor role in determining the information capacity of neural populations.Facultad de Ciencias Exacta

    Factors Affecting Frequency Discrimination of Vibrotactile Stimuli: Implications for Cortical Encoding

    Get PDF
    BACKGROUND: Measuring perceptual judgments about stimuli while manipulating their physical characteristics can uncover the neural algorithms underlying sensory processing. We carried out psychophysical experiments to examine how humans discriminate vibrotactile stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Subjects compared the frequencies of two sinusoidal vibrations applied sequentially to one fingertip. Performance was reduced when (1) the root mean square velocity (or energy) of the vibrations was equated by adjusting their amplitudes, and (2) the vibrations were noisy (their temporal structure was irregular). These effects were super-additive when subjects compared noisy vibrations that had equal velocity, indicating that frequency judgments became more dependent on the vibrations' temporal structure when differential information about velocity was eliminated. To investigate which areas of the somatosensory system use information about velocity and temporal structure, we required subjects to compare vibrations applied sequentially to opposite hands. This paradigm exploits the fact that tactile input to neurons at early levels (e.g., the primary somatosensory cortex, SI) is largely confined to the contralateral side of the body, so these neurons are less able to contribute to vibration comparisons between hands. The subjects' performance was still sensitive to differences in vibration velocity, but became less sensitive to noise. CONCLUSIONS/SIGNIFICANCE: We conclude that vibration frequency is represented in different ways by different mechanisms distributed across multiple cortical regions. Which mechanisms support the “readout” of frequency varies according to the information present in the vibration. Overall, the present findings are consistent with a model in which information about vibration velocity is coded in regions beyond SI. While adaptive processes within SI also contribute to the representation of frequency, this adaptation is influenced by the temporal regularity of the vibration
    corecore